Effect of Geometric Parameters of Superhydrophobic Surface on Liquid Slip
نویسندگان
چکیده
In this paper, we experimentally study how geometric parameters of textured hydrophobic surfaces affect a liquid slip, empowered by a custom-tuned microfabrication procedure that produces regular micro-patterns of posts and grates on an entire 4” wafer with a good size uniformity and no defect. A pitch of the patterns and a gas fraction of the structured surface are independently controlled, and the slip length over each type of patterns is measured using a rheometer system. On both grates and posts, the slip length increases linearly with a pitch but exponentially with a gas fraction. The trend of exponential increase by gas fraction appears more pronounced on posts than on grates. The defect-free surfaces allow the flows to maintain a de-wetted (Cassie) state at much higher pitches and gas fractions than previously possible, permitting flows with the maximum slip effect.
منابع مشابه
Improving the natural convective heat transfer of a rectangular heatsink using superhydrophobic walls: A numerical approach
The effect of utilizing superhydrophobic walls on improving the convective heat transfer in a rectangular heatsink has been studied numerically in this paper. The vertical walls were kept at isothermal hot-and-cold temperatures and horizontal walls were insulated. The boundary condition on the walls was: no-slip for regular, and slip (with slip length of 500 µm) for superhydrophobic walls. By c...
متن کاملComment on "Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface".
While many recent studies have confirmed the existence of liquid slip over certain solid surfaces, there has not been a deliberate effort to design and fabricate a surface that would maximize the slip under practical conditions. Here, we have engineered a nanostructured superhydrophobic surface that minimizes the liquid-solid contact area so that the liquid flows predominantly over a layer of a...
متن کاملSlippage of water past superhydrophobic carbon nanotube forests in microchannels.
We present in this Letter an experimental characterization of liquid flow slippage over superhydrophobic surfaces made of carbon nanotube forests, incorporated in microchannels. We make use of a particle image velocimetry technique to achieve the submicrometric resolution on the flow profile necessary for accurate measurement of the surface hydrodynamic properties. We demonstrate boundary slipp...
متن کاملEffective slip and friction reduction in nanograted superhydrophobic microchannels
Enabled by a technology to fabricate well-defined nanogrates over a large area 2 2 cm2 , we report the effect of such a surface, in both hydrophilic and hydrophobic conditions, on liquid slip and the corresponding friction reduction in microchannels. The grates are designed to be dense 230 nm pitch but deep 500 nm in order to sustain a large amount of air in the troughs when the grates are hydr...
متن کاملMeasurement of slip length on superhydrophobic surfaces.
In this paper, a review of different techniques used to measure the slip length on superhydrophobic surfaces with large slip length is presented. First, we present the theoretical models used to calculate the effective slip length on superhydrophobic surfaces in different configurations of liquid flow. Then, we present the different techniques used to measure the slip past these superhydrophobi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008